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Abstract—The plane strain and plane stress problem of a stationary or steadily moving crack with
frictional sliding crack surface contact is investigated, with emphasis on the asymptotic structure of
the crack tip fields. The crack is assumed to lie along the interface of an elastic anisotropic bimaterial
with an aligned plane of symmetry, which covers special cases where the bimaterial is orthotropic
or isotropic, or where the bimaterial becomes homogeneous. A full representation of the asymptotic
fields around the interface crack is derived in terms of several arbitrary analytic functions, with
explicit expressions for the singular crack tip stress and displacement fields given for a steadily
propagating interface crack in an isotropic bimaterial, which are used to predict the direction of
possible crack deviation from the interface. For a stationary crack, the singularity of the stresses
can be, in general, stronger or weaker than 7~ "/? (where r is the distance to the crack tip) depending
on the loading history, while for a steadily growing crack, the singularity must be weaker than r—'/2,
resulting in zero energy release rate at the crack tip. For bimaterials with orthotropic symmetries,
the form of the singular stress field is found somewhat similar to that of the classic mode II problem.
When these types of materials become homogeneous, and irrespective of the amount of friction
between the contacting crack faces, the singular crack tip fields are identical to those of the classic
mode Il problem. Hence, the solutions are also governed by the conventional stress intensity factor
K, implying a nonzero crack tip energy release rate, which is related to Kj; in the usual manner.
Implications of the above findings will be discussed.

1. INTRODUCTION

Cracks in homogeneous solids or along bimaterial interfaces play an important role in
determining the behavior of materials and structures. Within the context of linear elastic
fracture mechanics, the strength and toughness of a cracked solid can be characterized in
terms of the crack tip energy release rate and its critical value, the fracture toughness of
the material. In this connection, we note that, in evaluating the energy release rate and
measuring the fracture toughness, it is commonly assumed, although implicitly, that the
crack surfaces are not in contact. Although this assumption can be designed to hold under
laboratory conditions, it will be violated in many real-life situations. Typical examples
include (a) cases where cracks are subjected to combined compression and shear loadings,
so that crack faces come into contact, and (b} cases where cracks lie along bimaterial
interfaces under mostly shear loadings, so that sizeable contact zones emerge near the crack
tip (Willis, 1972 ; Comninou and Schmueser, 1979 ; Gautesen and Dundurs, 1988). When
the crack faces are rough and rugged, as they often are, friction will be generated when the
contacting crack surfaces slide over each other.

The effect of friction between the sliding crack faces on the fracture behavior of a
cracked structure can be argued in several ways. Physically, friction provides resistance to
external loading and consumes energy, hence reduces crack tip stress intensity and the
amount of energy available for fracture initiation and crack growth, making the structure
appear tougher. Mathematically, friction couples the shear and normal traction components
along the crack faces. This coupling may modify the structure of the crack tip stress and
deformation fields, which may in turn alter the mathematical form of the conventional
fracture parameter used for cases where frictional crack surface contact is assumed not to
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exist. This has special significance for interface cracks. As shown in this study for an
interface crack between two dissimilar anisotropic solids under plane strain and plane stress
conditions. the singularity of the crack tip fields will be weaker than r~'? if the crack is
growing under local steady-state conditions, where r is the distance to the crack tip. This
means that, within the context of linear elastic fracture mechanics, the theoretical energy
release rate will be zero at the crack tip, and any nonzero value obtained via a near-tip
contour integral will be path-dependent. On one hand, this result implies that very little
energy will be available for the growth of the interface crack when sliding friction is present,
and it can explain why an energy release rate based fracture toughness value peaks when
the loading is dominantly shear [for experimental observations of this phenomenon please
refer to a review article by Hutchinson and Suo (1992)]. On the other hand. this resuit
suggests that the energy release rate based fracture criterion in use today lacks a sound
theoretical foundation for problems involving interface cracks with sliding friction. and it
must be modified properly in order to be applicable to such interface crack problems.

As alluded to in the above, the work reported below investigates the asymptotic
features of the crack tip fields for interface cracks with sliding frictional contact between
the crack faces and provides a basis for further development in this and related areas. The
findings of this work can have important applications in a number of areas. One implication
of the findings can be seen from the brief discussion of the preceding paragraph regarding
the basis of fracture criteria and the measure for the fracture toughness. For example. for
the case of growing interface cracks with sliding friction in the contact zone, it can be
claimed that nonzero energy release rate values obtained from finite element solutions near
the crack tip are arbitrary and not meaningful, since converged finite element solutions will
result in zero values. The crack tip fields obtained in this study also can play an important,
and sometimes, essential role in computational and experimental studies of the subject. For
example, because of the nonlinearity associated with possible large scale crack face contact
under mixed mode loading conditions, numerical solutions of interfacial crack problems
have been very difficult. One way to improve the convergence and accuracy of the numerical
solutions is to incorporate the asymptotic features of the crack tip fields into the numerical
codes. This approach has been very effective. It is interesting to note that even the success
of analytical solutions often relies on the general understanding of the crack tip fields.
Finally, it is noted that the availability and understanding of the asymptotic crack tip
fields are critical to the proper interpretation of experimental measurements from cracked
specimens, especially those from crack tip areas.

The asymptotic problem of interface cracks with sliding friction in the contact zone
was first studied by Comninou (1977) and further analysed by Comninou and Dundurs
(1980), for stationary interface cracks in dissimilar isotropic solids. Their asymptotic analy-
ses, with the use of the common Williams’ eigen-expansion technique (Williams, 1959).
reveal that, depending on the loading history, the singularity of the crack tip stress field
can be stronger or weaker than that of the classic mode II problem. Furthermore, if an
interface crack is to deviate from the interface, it will be unlikely that it will veer into the
solid with the higher elastic modulus (assuming equal Poisson’s ratio). Based on the results
of their studies, an additional conclusion can be made : when the two phases of the isotropic
bimaterial have the same elastic constants. the asymptotic crack tip singular field will be
identical to that of the classic mode II problem, with the same singularity and the same
angular variations, regardless of the amount of friction.

In this paper, we will extend the previous analyses to deal with general two-dimensional
problems (plane strain and plane stress) in anisotropic materials, and we will consider both
stationary and steadily growing interface cracks, both with sliding friction in the contact
zone. We will also examine the effect of friction on the asymptotic near-tip fields around
cracks in homogeneous elastic solids. This work represents a further development on the
subject of interface cracks in elastic solids, which progresses in part from some recent works
by this author (Deng. 1993a.,b.c). In particular, the reference Deng (1993a) extends the
classic, interfacial crack tip fields (which assumes, in addition to isotropy, that cracks are
always open and their faces are not in contact). to give the complete representation of the
crack tip fields for the general case of coupled in-plane and out-of-plane deformations in
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arbitrary anisotropic bimaterials. Explicit Williams-type series expansions of the crack tip
fields for stationary and steadily growing interface cracks in isotropic bimaterials are derived
as special cases. The purpose of the reference Deng (1993c) is to deal with cases where the
open crack assumption is not valid, such as when shear loadings are involved. Because of
the complexity of the problem, it is assumed that the interface crack is in frictionless contact
and is propagating steadily in an isotropic bimaterial. Explicit expressions for the crack tip
fields and the energy release rate are given. The reference Deng (1993b) is concerned with
the frictionless crack-surface contact situation in arbitrarily anisotropic solids, which is
especially important for composite materials. General, coupled in-plane and out-of-plane
deformations are considered and some unusual findings are obtained. The above results for
interface cracks in frictionless contact can be used to model problems where constant
friction exists between the crack surfaces, but not problems where Coulomb-type sliding
friction is expected. Since in many practical situations Coulomb-type friction is in effect
between the crack (interfacial or not) faces, it is important that we understand its effect on
the crack tip fields, which motivated the current study.

The arrangement of the paper is as follows. In Section 2, the mathematical formulation
of the problem is outlined. In Section 3, the complete solutions of the asymptotic crack tip
fields are derived for a general anisotropic bimaterial. In Section 4, explicit specifications
for steady-state crack growth in an isotropic bimaterial are given. In Section 5, particular
results for cracks in homogeneous anisotropic solids are observed, with focus on solids with
orthotropic symmetries. In Section 6, the energy release rate is defined and evaluated in
terms of a contour integral, and its general path dependence is discussed. Findings of this
section will be used to interpret the results of a study by Stringfellow and Freund (1993)
regarding the effect of interfacial friction on the delamination of a compressed thin film
from its substrate. In Section 7, the main findings of this analytic study are summarized.

For the convenience of the reader, the symbols in this paper are kept similar to those
in Deng (1993a.,b.c) to achieve certain uniformity in formulation. To avoid unnecessary
repetition, the number of governing equations is kept to a minimum and many intermediate
steps of the solution are omitted. For more details, the reader is referred to the author’s
previous papers and other related publications in the literature as given in the references.

2. MATHEMATICAL FORMULATION

As illustrated in Fig. 1, we consider a semi-infinite crack between the interface of two
dissimilar, elastic, anisotropic half-planes, where the coordinate system is assumed to
translate with the crack in the case of steady-state crack growth. To separate the in-plane
deformation from the out-of-plane deformation, hence considering only plane strain or plane
stress problems in the chosen coordinate system, we require that the anisotropic materials
occupying the half-planes are so aligned that the xy-plane becomes a mirror plane.

Material 1

Crack Interface
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Material 2

Fig. I. An interface crack between two dissimilar elastic anisotropic half-planes.
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Under the above settings, the stress and displacement fields for each of the half-planes
can be fully represented by a complex function formulation due to Eshelby ef al. (1953)
and Stroh (1958, 1962), which can be written, for in-plane deformations only, as

u = 2 Re [Af(2)]
t = 2 Re[Lf(2)]
s = —2Re[LIT(z)— pv’ AT (z)]. {(H

In the above, u = (u,,u,) is the displacement vector; t = (6,,,0,,) and s = (0,,,0,,) are
stress vectors; the symbol Re denotes the real part of what follows; p is the mass density
of the material ; v is the speed of crack growth (v = 0 for stationary cracks) and is assumed
here to be smaller than ¢y, the bimaterial’s smaller Rayleigh wave speed ; and f(z) = [f,(z,),
f1(z,)] 1s a vector composed of analytic functions, with {'(z) = [df,/dz,, df./dz,], and the
complex variables z, and z, and matrices A, L. and I are related to an eigenvalue problem
described below. Assuming plane strain conditions, the eigenvalue problem is stated as
Pa = 0, where a is a vector and P is a symmetric matrix with components related to the
eigenvalue p and the material’s fourth order elasticity tensor C,,, as

Py = (C i —pt)+2C110p+Ciayap’
Py = Cnx2+(C1522+C1212)}5’+61222P2
Py = (C315—ptP) +2C 30,0+ Conaap”. 2

When v is less than cg, the eigenvalues or the roots of the equation P, P,,— P}, = 0 for
the unknown p cannot be real (Eshelby er al, 1953). Without loss of generality, the
eigenvalues can be denoted by, say, p, and p, and their complex conjugates, where p, and
p, have positive imaginary parts. The two eigenvectors associated with p, and p, respec-
tively, can now be used as the two columns of the matrix A, and matrix L can be generated
from A, p, and p, through

k=2
L;,= kz {C:zkx'{‘P;(Cszkz“Pﬁz)]Akj (.j=12). (3)
=1

The matrix I is diagonal, with p, and p, as its two diagonal terms. The complex variables
=, and z, are defined as z, = x+p, y and z, = x+p, y, respectively. In the above formu-
lation, the eigenvalues p, (i = 1,2) are assumed to be distinct, which makes the matrices A
and L nonsingular. Solutions for degenerate cases where p; are not distinct can be obtained
by taking appropriate limits of the final solutions for u, t and s, or derived from relevant
complex function formulations [see e.g. Suo (1990)]. In the case of plane stress, the com-
ponents of the elasticity tensor C,,, used in the above operations must be replaced by
(Cijkl_ C33ijC33kI{iC3333)-

For the purpose of easy algebraic manipulations, we can rewrite the expressions for u
and t from eqn (1) as:

u = 21m [Bh(z)]
t =2Re[h'(2)] 4

with
h(z) = Lf(z), B=iAL"' 5

where i = ./ —1 and symbol Im denotes the imaginary parts of what follows.
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To eliminate ambiguity in the following, explicit subscripts 1 and 2 will be reserved,
and used whenever deemed necessary, to signify quantities that are associated with, respec-
tively, the upper and lower half-planes. Generic notations, unless otherwise specified, will
still be used to denote quantities that are applicable to both materials.

In completing the mathematical formulation of the problem, we list here the boundary
conditions to be satisfied by the analytic functions. Along the positive x-axis, the tractions
and displacements are fully continuous across the interface :

=t uy=u (6)

and along the negative x-axis, the slip conditions are enforced between the sliding crack
faces:

(a,\'y)l = (ax_v)Z = —Auk(o-yy)la (ayy)l = (0_\')')2 < 0’ (uy)l = (uy)z (7)

where 4, equals the positive or negative value of the coeflicient of kinetic friction depending
on the relative sliding direction of the two crack faces. Specifically, y, > 0 when d(x,),/
dr—d(u,),/dt > 0 and p, < 0 when d(u,),/ds—d(u,),/dt < 0, where d( )/d¢ denotes time
derivative.

3. GENERAL SOLUTION

In this section we derive the general form of h’(z) that satisfies the conditions set forth
in eqns (6) and (7), which can be integrated with respect to z to yield h(z). Once h'(z) is
obtained, it must be converted to vector f(z) according to the relation in (5), with z replaced
by z; (i = 1, 2) for its ith component. Substitution of f(z) into (1) then generates a complete
representation of the crack tip stress and deformation fields.

To facilitate the derivation, we note that the equations in (6) and (7) can be recast
into:

t1=t2 (y=0,—00<x<00)
u=u (y=00<x<w)

(axy)l = _ﬂk(ayy)l, (uy)l = (uy)Z (J’ = 0’ —0<x< 0) (8)

Using the standard concept of analytic continuation, with details omitted here, we can
show from the first line of (8) that the following is true over the whole plane:

h’(z) —h3(z) = hy(z) — i (2) = g(2) ®
where the vector g(z) is composed of entire functions and is restricted by g(z) = —g(z) but
is otherwise arbitrary. [Here we understand that g(z) denotes the complex conjugate of

g(2), as implied by the overbar.] We further conclude, from the second line of (8), that the
following holds everywhere on the whole plane except along the negative x-axis:

B.h'(2) + B,h3(2) = Byhi(2) + B R (2). (10)
We note that eqns (9) and (10) are sufficient for expressing h}(z), h3(z) and h,(2) in terms
of h’(z) and g(z), implying that we only need to concentrate on the solution for h/, (z), which
is what we hope to achieve from the last line of (8). Before we proceed, we find it convenient
to introduce two hermitian matrices, H and G, which are defined by

H=B,+B,, G=B,-B,. (11)

It can be shown that when the crack speed is less than the smaller of the two Rayleigh wave
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speeds of the bimaterial, H is positive definite. Now from the last line of (8) and by making
use of the relations derived from eqns (9) and (10), we obtain, for v = 0, —oc < x < 0, the
following nonhomogeneous Hilbert problem :

Uh" +Vh|™ = Wg(x) {12)

where superscripts + and — mean that the argument of h}(z) is evaluated just above and
below the x-axis, respectively, and the components of the matrices U, V and W are given
by:
Un=IH|, U,=wlH|, U, =H,, U,=H,;,
Vii= Hnsz"Hgl +wH, ((Hy —H,»),
Via = Hy(Hyy— Hy)) +u(H, Hyy — HY),
Voy=—Hy, Vi = —H,,,
Wi =H|-G \Hy+ Gy Hy + (G H i, — Gy Hy ),
Wi = GouHy — G Ho+ i (|H| = G Hy  + G2 H ),
W"il - W~,2=O, (13)
where |H| stands for the determinant of H. The general form of h’(z) is given by the general
solution for eqn (12), which consists of a particular part and a homogeneous part. It is easy

to see that eqn (12) has an infinite number of particular solutions, and it can be shown that
a simple one coincides with the solution of this equation:

(H+H)h' (z) = (H-G)g(2) (14)
which can be put in the form of (Deng, 1993b)
hi(z) = [I+(ReB,)"' Re B} 'g(2) (15)

where I is the identity matrix. The corresponding particular solution for h5(z) can be
obtained from (15) by switching B, and B,. It is interesting to note that this particular
solution is identical in form to that for an interface crack without contact (Deng, 1993a),
which is because it represents a crack tip field that does not violate any boundary conditions
along the x-axis for both types of interface crack problems. This can be seen from the fact
that this particular solution produces displacements that are fully continuous across the
whole x-axis and stresses that give rise to zero tractions along the bonded line as well as
the crack faces.

To arrive at the homogeneous part of the general solution for hj(z), we note that we
can express the unknown vector in terms of the two eigenvectors of the following eigenvalue
problem

Uq=41Vq (16)

which has eigenvalues 4 = e 2 and A* = — | and the corresponding eigenvectors

— 1 _HZI
1=\ "&m,

. _(imHy [ H,ReHy]| imlmH, [, HiReH,, -
1 ( ! H.H),, | Hy, * H, Hy, 7

where ¢ is a real number, which can be determined from
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tanwd = u B, (—1/2<dé<1/2)
B = Im (H,))/[Hz,— m Re (Hy)]. (18)

With such an arrangement, the homogeneous part of the general solution can be written
as:

2°¢(2)
hi(z) =
()

q+&*(2)q* (19)

nZ

where £(z) and &*(2) are two arbitrary entire functions which are real-valued when the
argument z is replaced by a real number. It can be shown, noting that Hq = Hg and
Hq* = Hg*, that the corresponding homogeneous solution for h3(z) of the lower half-plane
can be generated from that for h\(z) by replacing q and q* in (19) with their complex
conjugates.

We recall that the general solution is obtained by combining the particular solution
with the homogeneous one, hence it involves four entire functions, namely £(z) and &*(z)
plus the two component functions in g(z). These functions can be expanded into Taylor
series at the crack tip z = 0, where the coefficients for £(z) and £*(z) are real-valued and
those for g(z) are purely imaginary. Substitution of these series in (1) will then generate a
complete Williams-type series expansion for the crack tip stress and deformation fields. It
is worth pointing out that the series from g(z) will generate two sets of terms with integer
powers of r, the distance to the crack tip. These terms, as discussed previously, yield
continuous displacements and zero tractions across the whole x-axis, and are present in
crack tip field expansions for cracks with various crack surface conditions (e.g. without
contact, with frictionless contact or with frictional contact). Similarly, it is noted that the
series from &*(z) will generate one set of terms with integer powers of r, which give rise to
continuous displacements and tractions (not necessarily zero) across the whole x-axis. In
contrast, the series from £(z) will generate one set of terms with non-integer powers of r,
with the first term producing the only singular part of the crack tip fields, which can be
represented by

2) = 2°Kq/2./2nz
2(2) = 2°Kq/2/2nz (20)

where K is the stress intensity factor. From (20), the traction vector along the bonded line
is found to be

p12HK Re H,,
(O-x_\‘s O-yy) = W (ly - '“I'{“';z_) (21)

from which it is easy to see that the stress intensity factor X can be defined with ., through
K = lim,_o[(27)"?0,,r'"*°] evaluated along the bonded line. For an orthotropic bimaterial,
the normal traction will be zero since Re H,, = 0. In this case, the traction along the
interface has the same form as that for a crack in a homogeneous material under mode 11
conditions, except that the singularity here is different. As such, it is reasonable to speculate
that crack growth along the interface must be driven by shear stress there.

It is seen that the strength of the singularity represented by (20) depends on the sign
of the singularity index &, namely it will be weaker than '/ if § > 0 and stronger than
r~'%if & < 0. To gain better insight about the sign of §, let us examine the normal traction
g, and sliding displacement Au, = (u,), — (u,), along the crack surfaces, which are found
to be
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6, = —r" ' "T(BK)cos (nd)/ 2

Au, = 2r' **°Kcos (md)HI(1 +20)H,. | 27 22

Because of the positive definiteness of the matrix H and the particular interval
—1/2 < d < 1/2. quantities |H|, H, and cos (nd) in the above expressions will be positive.
Then from the crack surface contact requirement a,, < 0, we must have Kf = 0. Since the
sign of the friction coefficient p, is, by definition, the same as that of the time derivative of
Au,or dAu, jde, it is clear from egn (18) that the sign of & is the same as that of the product
of dAu, jdt and f. thus depending on the deformation or loading history as well as the
mismatch parameter f§ of the bimaterial system.

For a stationary interfuace crack, it ts easy to see from (22) that the sign of dAw, /dr is
equal to the sign of dK/ds. If the magnitude of K increases monotonically from zero, the
sign of dK/d¢ will be the same as that of K. In this case. the product Kf is always positive,
as required by the crack surface contact requirement discussed earlier. hence ¢ will always
be positive. It can be argued then that the crack tip field singularity will be weaker than
¥~ if an interface crack with frictional contact is loaded monotonically from the start.

For an interface crack that is growing steadily or whose crack tip field is in a local

steady state, the steady-state approximation d( );ds = --rC( ):Cx can be used to derive,
from eqn (22) and noting that r = — x along the crack {flank. the following relation

dAu, o ' Keos (rd)H|
LN L (23)

which holds near the crack tip. It is clear from (23) that the sign of dAu, /df is the same as
that of K, hence the sign of & will be the same as that of the product Kfi. which again is
positive as required by the crack surface contact condition. Hence we conclude that the
crack tip field singularity will be weaker than r '~ for a moving interface crack with
frictional crack surface contact, if the near-tip region is in a local steady state. A significant
implication of this weaker singularity is that the conventional strain energy release rate G
will be zero at the crack tip. This observation will be discussed further in Section 6 in
connection with a recent study on the delamination of compressed thin films by Stringfellow
and Freund (1993).

4. CRACK GROWTH IN ISOTROPIC BIMATERIALS

The solution presented in the preceding section applies to a stationary or growing
crack along the interface of a general anisotropic bimaterial with the xy-plane as the aligned
plane of symmetry. The solution involves, for each material, several matrices, such as A
and L. that pertain to an eigenvalue problem for the material, and are not given explicitly. To
overcome certain inconvenience created by the implicit formulae for a general anisotropic
bimaterial in discussing the results of the stress and displacement fields. we will specify the
general results here for the case of an interface crack growing steadily in an isotropic
bimaterial.

The complex function formulation presented in Section 2 for u generic anisotropic
material can be reduced to a particular explicit form given by Radok (1956) for steady
plane motion problems in isotropic solids. This can be done by redefining. respectively, the
analytic function vector f(z) with {(—¢/2G.1/2G). the complex variables =, and =, with z,
and z,. and the eigenvalues p, and p, with % and 2,. The resulting formulae for stresses and
displacements are

o = —Re[(1+24" =) (z) +224/'(z)]
6, = Re[(14+20)¢"(z) + 20 (=]

a., = Im{2nd (- th ()] 24y
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u, = —Reld(z) +oay(z)])/G
u, = Im [ (z) +¥ (2))/G. (25)

In the above, G denotes the material’s elastic shear modulus (rather than the energy release
rate used earlier and later), and the constants &, and o are related to the crack speed v and
the material’s longitudinal and shear wave speeds, ¢; and c;, respectively, through

o = v/ 1 - (U/Cl)z, o = AV 1 - (U/Cs)2
¢, =+/Glp, a=/(k+1)/(k—1)c (26)

where k = (3—1v)/(1+v) in plane stress and (3—4v) in plane strain. The matrix H for a
crack growing along the interface of an isotropic bimaterial system is given by

H, -iH%
H‘[iH,*z Hy | 27

With the definition of D = 4oy, — (1 +«2)? the components in (27) can be expressed as

Hy, = [o(1—02)/GD], + (1 — )/ G D,
Hy, = [(1—a)/GD], + [a(1 —)/G D,
H¥*, = [Quya,—1—a?)/GDY), — [(Royo,— ol )/GD],. (28)
The eigenvectors in (17) are now simplified to
q=(,—i), q*=({0—p,1+igI) (29)

where T' = H%/H,, and TI = H}/H, |, both of which become zero when the bimaterial
becomes homogeneous. The general solution for ¢(z)) and y(z,) for the complete interfacial
crack tip fields can be generated from that for h(z) in (15) and (19). Noting

¢\ [ 4iw/D —~2(1+22)/D7,,
{‘/"}_[—2i(l+a3)/u 4a,/D }h (30)

and with certain rearrangements and redefinitions, we list here the expressions for ¢'(z))
and ¥’ (z,) for the upper half-plane:

o ilRe AT+, 2020, 11+ (1 +0d)] + 2ip 24, + T(1+02)]
¢’(z) —__D'\/in— ZI—Zlf(Zl)" D (@)
Ran(t+w)—(1+a)(1+0)ll(@)  Ron(l+w)+ (1 +ad)(1+w)ll(z) 31
D+ ) (1 + ) D+ )1+ Gl
V) = — i[2oc,l"+—(l+oc§)lzgé(zs)+ 2[204 + I1(1 4+ a2)] + 2ip 20T + (1 + a2)) ()
D./2nz, D
[204(1 4+ @) —n(1 + o) (1 + )] (z;) _ Rau(+o) -+ +o2)(1+0))(z,) (32)

D(1 +w)(1 +w,) D(1+w)(1+w,)

which can be integrated, with respect to z; and z, respectively, to yield ¢(z)) and ¥(z,). In
the above, the exponent é now can be determined from tan (nd) = wI", and the mismatch
parameters 1, w, and o, are given by
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ppesan [oc;(l—ocf)/GD]‘ {oc,\.(lmo:f)fGD],
n=HulH,,, o=— "0, S RPN 33
N T —ayepl T (-G )

[

We point out that the new arbitrary entire function {(z) in (31) and (32) is derived from
g(z). To obtain solution of the crack tip fields for the lower half-plane, one only need
replace I' with — I, TI with —II, o, with o', and o, with oy in eqns (31) and (32).

As discussed earlier in Section 3. a complete Williams-type series expansion of the
interface crack tip fields can be generated by expanding the entire functions in (31) and
{32) into Taylor series at the origin. We note that the coefficients of the series from &(2)
and &*(z) will be real, while those from {(z) will be complex. The singular crack tip fields
derive from the first term of the series expansion for &(z), which correspond to, for the
upper half-plane,

&(z) = i[20CS+T(1+0€3)12‘5K‘ V) = — 20T + (1 +o))=2K

D./2nz D/ 2nz,

(34)

where K is the stress intensity factor. Substitution of (34) into (24) and (25) then yields the
following explicit expressions for the singular crack tip stress and displacement field vari-
ations of the upper half-plane (0 < 8,, 6, < 180°):

Oop = {— (1420 —a2) 2o+ T (1 + o)} 17+ sin (1/2—8)6,

K
D/2n

4 202047 + (1 4+ad)]r 2 sin (1/2—8)8, ],

K .
Gy = (1 + o) 2o+ T(1 +a2)lr 12+ sin (1/2—6),
N

~ 20, [200 T+ (1 4+ o)r7 V=2 sin (1/2—8)6, ).

0, = {20206+ T (1 +a2)]r 1240 cos (1/2—8),

K
D./2n

— (1) 2oy T+ (1 +ad)r7 2 cos (12— 08}, (35)

2K

U, = e {2+ T (1 +a2) ] 0 sin (1/24+0)6
(+20GD ‘ l

—a 200+ (1 +ad)]ri 0 sin (1/2+9)6,},
— 2K 2 1,249 .
u, = ——————— {20+ T (1 + o)1 **" cos (1/2+ 6)0,
(14+26)GD./2x
—[Rel+ (1 +a)]ri 2 P cos (1724 0)8,).  (36)

where (7, 0,) and (r,, 6,) are the distorted crack tip polar coordinates, defined by

5= xtigy=ne™, o= x+iny =re. (37)

Counterpart expressions for the lower half-plane, for which —180° < 6, 6, <0, can be
obtained from (35) and (36) by replacing I' with —TI".

We note that the only nonzero stress and displacement components along the bonded
line are ¢,, and u,, identical to the situation for the classic mode 11 problem. In fact, the
angular stress and displacement variations described in (35) and (36) are only slightly
different from those of the classic mode II problem, which can be seen from figures shown
later. We also note that the normal stress ¢,, along the crack surfaces is found to equal
—TKr~2%% cos (8m)/(2m)'2. Since o,, must be compressive there, as required by the contact
condition, we must have 'K > 0. When the crack faces are smooth, hence in frictionless
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Fig. 2. Angular variations of crack tip polar stress components (a) ¢,,, (b} oy, (¢) 6,4 for the case
of vy =v, =03, 4, = 1.0, v/c, = 0.5 and g, = 0.4, with i varying from 0.1 to 1.0.

contact, § will be zero and the crack tip field solutions in (35) and (36) recover those
presented in Deng (1993c), where an expression for the crack tip elastic energy release rate
was also provided.

To illustrate how the singularity and angular distribution of the crack tip stress field
vary with the coefficient of kinetic friction, crack speed and other key parameters of the
bimaterial system, the angular variations of the crack tip polar stress components a,,, 64
and a,4 for various cases are plotted in Figs 2-6, and the variations of the singularity index
& with respect to the system parameters under certain specified conditions are plotted in
Fig. 7. In the figures, A; denotes the ratio of the shear modulus of material 1 to that of
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Fig. 3. Angular variations of crack tip polar stress components (2) o,,, (b} oy (¢) o, for the case
of vy =v, =034, =10, v/c, = 0.5and y, = 0.4, with 4, varying from 1.0 to 10.0.

material 2, 1, the ratio of the mass density of material 1 to that of material 2, v/c,, the ratio
of crack growth speed to the shear wave speed of material 1, v, the Poisson’s ratio of
material 1 (with that of material 2, v,, equal to 0.3), and g, the absolute value of the
coefficient of kinetic friction between the contacting crack faces. The parameter values are
so selected such that, in general, material 1 is “softer” (with smaller shear modulus) or
“heavier” (with larger mass density) than material 2.

It is noted that the angle 8 in Figs 2-6 is measured from the interface and is positive if
counterclockwise, and all stress components are normalized by Kr—'/?+%/(2m)"2, where r is
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the radial distance to the crack tip. Figure 2 shows the effect of i, on the stresses, Fig. 3
the effect of 4, Fig. 4 the effect of v, with v, = 0.3, Fig. 5 the effect of v/c,;, and Fig. 6 the
effect of . It must be pointed out that the positive values observed in the figures for gy, at
i = +180 imply that the values of the stress intensity factor X for the shown cases must
be negative, hence the signs of the actual stress variations are just the opposite of those in
the plots. For the parameter values examined, the angular variations of the stresses are
found to change only slightly from one another. The largest changes occur when the shear
moduli of the materials are very different (see Fig. 2) or when the crack speed is approaching
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the Rayleigh wave speed of the “‘softer” material or material 1, which is about 0.927¢,, (see
Fig. 5).

An important observation can be made from the above findings. It is clear from Figs
2--6 that, for a steadily growing interface crack in an isotropic bimaterial, the singular part
of the circumferential stress oy at the crack tip is always positive in one solid and negative
in the other (except near the crack flank), which implies that if the crack is to curve out of
the interface, it is likely that it is going to branch into the solids with positive g4. For
example, for the cases shown in Fig. 2 with a softer material (for which 0° < 8 < 180°) on
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Fig. 6. Angular variations of crack tip polar stress components (a} o,,, (b) 6. (€) 0,4 for the case
of vy = vy = 0.3, 4, = 0.1, 4, = 1.0 and v/¢,; = 0.5, with y varying from 0.0 to 0.8.

top of a stiffer one (for which —180” < § < 0°), 6, is found to be mostly positive within
the softer material (note here that the stresses are normalized by a negative stress intensity
factor K, along with other positive values). Hence, crack branching or kinking is more
likely to occur towards the softer material, although whether it will actually take place will
depend on the relative values of the fracture toughnesses of the interface and the component
materials. Further, if the direction of crack branching is governed by the maximum of oy,
it will occur at an angle of about 70° from the interface, at which the shear stress 6,4 is
approximately zero, as indicated by the figures. For the cases studied, this branching angle

SAS 31:17-1
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is found to vary only slightly when the system parameters change. The largest variation is
observed when the crack propagation speed takes values from zero to 0.9¢,;, which is near
the Rayleigh wave speed or 0.927¢,, of the softer material and results in a crack branching
angle of about 80 (see Fig. 5).

Before closing this section, we list here the specified conditions mentioned in Fig. 7 for
the various curves. The & vs A curve is for the case v, = v, = 0.3, 4, = 1.0, /¢, = 0.5 and
iy = 0.4:the o vs 4, curve for the case v, = v, = 0.3, 4; = 1.0, ¢/¢,, = 0.5 and g, = 0.4 the
0 vs t/c curve for the case vy = v, = 0.3, 4 = 0.1, 4, = 1.0 and p, = 0.4; the & vs g, curve
for the case v, = v, = 0.3, /; = 0.1, 4, = 1.0, and v/c,, = 0.5; the & vs v, curve for the
case v, = 0.3, 4; = 1.0, 4, = 1.0, v/c,, = 0.5 and p = 0.4. It is clear from Fig. 7 that for the
parameter values studied, the singularity index & has values ranging from 0.0 to 0.1, which
implies that the crack tip stress singularity for a growing interface crack with frictional
crack surface contact will range from =" to r=°“. The weakest singularities occur for
cases with high crack propagation speed or large coefficient of kinetic friction, while the
disparity between the mass densities of the materials is found to have a very limited effect
on the crack tip singularity, making the singularity almost the same as r~*°,

5. FRICTIONAL CRACKS IN HOMOGENEQUS SOLIDS

An important aspect of the general solution of the interfacial crack tip fields given in
the previous two sections is that it fully covers the case where the bimaterial is in fact
homogeneous. To the author’s best knowledge. there has been no published formal studies
on the structure of the crack tip fields in a homogeneous anisotropic solids for a stationary
or growing crack whose surfaces are in frictional contact, which, as we mentioned in the
introductory section. is a situation that may arise in practice when a crack is in a nonuniform
stress field where combined compression and shear loading around the crack may exist. As
such, it is felt that a brief exposition here on the subject in question will be helpful.

When a bimaterial system becomes homogeneous, the hermitian matrix H associated
with the system becomes real-valued. It is then easy to see from (18) that §, and hence 4,
become zero, irrespective of the value of the kinetic friction coefficient p,. The general
solution for h,{(z). given collectively in (15) and (19)., now simplifies to

W) = () = Qrz)” P22+ X (2)g* +8(2)/2 (38)

where q and ¢* can be obtained from (17) with Im H,, = 0. We remark that the analytic
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functions in (38) represent the complete crack tip fields for a crack with frictional or
frictionless (u = 0) surface contact subjected to a combined compression and shear loading,
and that these fields cannot be obtained directly from those of the classic mixed-mode
problem, which can be seen from the comparison below for orthotropic materials.

To make further observations, we now focus our attention to homogeneous solids with
at least orthotropic symmetries. In this case we note that H,, = 0 and the vectors q and q*
can now be written as

q=(10), q*=(—p.D). (39)

To compare the solution given by (38) and (39) with that for the classic mixed-mode
problem. we list here a rearranged version of the mixed-mode crack tip field solution by
Deng (1993a) for a general anisotropic material

W2) = hi(z) = Qrz) " EE)(L 0)/24 2rz) T PEH2)(0, /2 +g(2)/2. (40)

In the sense of a Williams-type series expansion, the first function in (40) represents mode
11 terms of order r~'2*" (n =0, 1, 2, . . .), the second function mode I terms of order
r 1247 and the third function mixed-mode terms of order r". It is clear that the second
function in (38) differs from its counterpart in (40), hence (38) as a whole differs from (40),
even when 1, = 0. Consequently, when compared with (40), a series expansion from (38)
will have the same r~"*** mode 11 terms, but will lack those »~'"**" mode I terms while
gaining extra r" terms. This stems from the fact that the classic mixed-mode problem
assumes that the crack surfaces are not in contact, implying that the crack is subjected to
combined tension and shear loading.

From the above comparisons, we can conclude that the crack tip stress and dis-
placement fields for a crack with frictionless or frictional surface contact possess the same
singularity as that for the classic mode II problem, with the same radial and angular
variations and hence governed by the same mode 11 stress intensity factor or Kj;. Since the
singularity is of the order r~'/%, the conventional contour integral for the crack tip strain
energy release rate will be nonzero and in fact will be related to Ky in the usual way.
When the crack surface contact is frictionless, we expect the contour integral to be path-
independent. When the contact is frictional, the integral must be evaluated at the crack tip
{more details in the next section).

6. ENERGY RELEASE RATE

The concept of energy release rate has played a central role in the development of
fracture mechanics, and more recently, in the fracture mechanics of bimaterial interfaces.
For elastic isotropic bimaterial systems, it has been observed that the critical value of the
energy release rate for crack growth initiation, G, or interface toughness, is a monotonic
function of the local mode mixity at the crack tip [for details see a review article by
Hutchinson and Suo (1992)]. Specifically, the interface toughness G, is minimum in a tensile
state and increases continuously as shear stress increases, and climbs to extreme values
when the stress state is mostly shear ahead of the crack tip. It is noted that the above
observations are made from interpretations of various experimental data based on the
singular crack tip fields for interface cracks without crack surface contact, namely the usual
inverse-square-root singularity with or without oscillation. An important aspect of this type
of singularity is that the energy release rate will have a finite value related to the stress
intensity factors of the singular crack tip fields, and can be evaluated numerically for
complex problems using a path-independent contour integral, namely the well-known J-
integral (Rice, 1968),

The strong dependence of interface toughness on mode mixity has been attributed to
several factors, including asperity contact of the crack faces at a certain distance behind
the crack tip and plastic deformation around the crack tip (Evans e al., 1990). More
recently, a study by Stringfellow and Freund (1993) reveals that another key mechanism
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Fig. 8. Crack tip contours used for the calculation of the energy release rate.

for increased interface toughness for shear mode crack growth initiation is the sliding
friction between the crack faces, which may develop in a continuous contact zone immedi-
ately behind the crack tip when the crack tip is in a local shear state. It is found that the
existence of sliding friction between the contacting crack faces reduces substantially the
value of the stress intensity factor for a crack in a homogeneous solid and causes a significant
drop in the energy release rate evaluated at the tip of an interface crack. Again, it is noted.
that the preceding study presumes the existence of an inverse-square-root singularity at the
crack tip.

The purpose of this section is to apply the findings of the asymptotic analyses of
previous sections to give an account of the observed reduction in the energy release rate for
the cases studied by Stringfellow and Freund (1993). In particular, the effect of a weaker
singularity at the crack tip on the calculation of the energy release rate will be noted. When
the energy release rate is calculated from a J-integral based contour integral, explicit
expressions for the path dependence of this integral near the crack tip will be derived.

We consider a crack which is growing steadily (quasi-statically or dynamically), or a
crack which is stationary under quasi-static loading. As shown in Fig. 8, there is a region
around the crack tip that is enclosed by line segments C, and C_ along the crack flank and
circular contours I', and I',, both centered at the crack tip and with radii r and ¢ — 0,
respectively. With the crack tip excluded from this region, as implied by the limit that the
radius of I', is approaching zero rather than equals zero, the stress and displacement fields
and their spatial derivatives will be smooth functions within this region, hence enabling the
use of the divergence theorem. Under the above settings, it can be shown that the following
contour integral along the complete path I',.+ (—T )+ C, + C_is zero:

§ (W -+ Lyn, —on,0u,/0x}dS = 0 (40
-+, +C

where the indicial summation convention is used, with Latin indices taking values 1 or x
and 2 or y; n is the outward unit normal vector with the region on the left of the
path direction considered the interior; and W = g,8,/2 and L = p(du,/d1){du;/dr}/2 are.
respectively, the strain energy density and kinetic energy density. It is important to note
that although the conclusion shown in (41) is expressed in terms of circular contours, its
validity also holds for contours of any other shape. An immediate implication of eqn (41)
can be written as

G, = G +AG,,

G, =‘( [(W+ Lyn, —o,n,0u,/0x] dS,
r,



Analysis of cracks with frictional contact 2425
Gg = J [( W+ L)n, "‘“O’,‘jnjaui/ax] dS,
rC
AG, = — j [(W+ L)n, —a,n,0u;/0x] dS, (42)
C.+C_

where G, is the commonly known energy release rate (at the crack tip), and G, is the rate
of energy being released into the region surrounded by I',, which differs from G, by AG,.
Noting that n, = 0 along the crack flank and that traction (s,,,0,,) and normal dis-
placement component u, are continuous across the crack surfaces, one can simplify the
expression for AG, into

AGr = - J'r oxy(rs i 7[) é% [ux(rs TC) - ux(rs - T[)] dr. (43)

0

To arrive at explicit expressions for the path dependence of the contour integral G,
near the crack tip for various cases, the integrals G, and AG, will be evaluated using only
the leading nonzero terms of the stress and displacement field expansions at the crack tip.

Interface cracks

For interface cracks with frictional contact, the crack tip singularity will be of the form
r~ 2% The discussion here will be limited to cases where & is positive, which is true for
crack growth with crack tip field in a local steady state, and for crack growth initiation
under continuous loading conditions. It is easy to see that this type of singularity will lead
to an integrand for G, that is as singular as r ' *?, which, when combined with the relation
dS = rd#f along a circular path, will result in a zero value for G, since ¢ is approaching zero.
To evaluate AG,, we note from the general solution in Section 3 that the leading nonzero
term is the singular term, which generates the following stress and displacement components
along the crack flank :

Gulr, £7) = r~ 12+ (u BK) cos (nd)/\/ 2m,

%{ux(r, m)—uy(r, —m)] = —r~V2**K cos (n6)[H/ Hy/ 2m. (44)

Substitution of (44) into (43) and (42) then yields the following expressions for AG, and G,
in a region near the crack tip:

(45)

G, =AG, = [’”(ukﬁ) cos? (né)}{KﬂHl}

7o 4H22

Since p, f > 0, the above equation always gives a positive value for G, at r > 0.

For interface cracks with frictionless contact, 8 is zero and G, is finite. Since there is
no friction, hence no shear stress along the crack flank, the contour integral G, wili be path-
independent, as indicated by a zero AG, value. Expressions for G, in terms of the stress
intensity factor X can be found in Deng (1993b,c) for various cases. It is noted that the
final expressions for G, for these cases can be derived from that in (45) by noting the
relation in (18) and by taking the limit g, — 0, hence the limit § — 0.

Cracks in homogeneous solids

For cracks with frictionless or frictional surface contact in homogeneous solids, the
singularity is of the inverse-square-root type, which will give rise to a nonzero value for G,.
Since the leading and singular term of the crack tip fields do not depend on the amount of
friction, expressions derived in Deng (1993b,¢) for interface cracks with frictionless contact
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can be applied here for G,, with the upper and lower half-planes sharing the same elastic
constants. Along the crack flank, the leading nonzero term for u, is governed by K, which
gives

|"I\)

(. m) —u(r, —m)] = —r~ K|H|/Hs. , 21 (46)

)

X

However, the K-controlled singular crack tip fields produce zero tractions along the crack
flank, irrespective of the amount of friction between the crack faces. This can be argued
from the expression for a,, in (22) for a general interface crack. When a bimaterial becomes
homogeneous, the mismatch parameter §§ becomes zero, which leads to zero o, .. and hence
zero o, values along the crack flank. As such, the leading nonzero term for the tractions
must come from the constant terms of the entire function £*(z) and those in g(z), but the
latter happen to produce zero tractions along the entire x-axis, as discussed in Section 3.
Therefore, the leading nonzero terms for the tractions along the crack flank will only come
from the constant term of the entire function &*(2). say &*(z) = C. which results in

Oy = —2Cu R/ H H,-,
G,y = 2CHH|/H,  H . 47

Since the crack surfaces must be in contact, hence g, be nonpositive, C must be negative
for nontrivial cases. Substitution of (46) and {47) into (43) and (42) yields

G, =G, +AG,
AG, = 4(— C)(uK)HI>\/r2n/(H, H3.). (48)

As argued in Section 3 for the more general case of an interface crack. the sign of y, will
be the same as that of K. hence AG, is always positive for u, # 0 at r > 0, which means that
the contour integral G, has the energy release rate G, as its local minimum at the crack tip.
When friction is not present, G, will be path-independent, which is apparent from (48)
when y, = 0.

Discussion

Results obtained above will now be used to discuss recent findings by Stringfellow and
Freund (1993) regarding residual-stress induced delamination of thin films from their
substrates. The steady-state delamination process modelled in their study can be viewed
here as a limiting case of our analysis, namely the steady-state, quasi-static growth of a
crack along the interface of an elastic isotropic bimaterial. Results for this case can be
obtained from those for a propagating crack by letting the crack speed approach zero in
pertinent end expressions.

The first type of problem studied by Stringfellow and Freund (1993} deals with cracks
with frictional contact along interfaces of two identical solids. As shown by the asymptotic
analyses in previous sections, the singular crack tip fields are the same as those for a classic
mode I problem and hence governed by the mode II stress intensity factor K|, regardless
of the amount of friction between the contacting crack faces, which implies that the energy
release rate G, will be related to Kj; in the same way, namely G, = K°/E*, where E* = E,
the Young's modulus, in the plane stress, and E* = E/(1 —v") in plane strain. In light of
this, if the energy release rate G, is evaluated with the J-integral along a contour very close
to the crack tip. as is done in the study in question, the difference between G, for a crack
without friction and that for a crack with friction will equal the difference between squares
of the corresponding values of Kj;. According to eqn (48) however, if the contour is not
that close to the crack tip, the calculated value for G, from a contour integral for a crack
with friction is in fact the value of G,, increased by an amount of approximately AG,. In
the study referred to here, the drop in K, from a crack without friction to one with friction
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Table 1
EJE, 0.25 0.25 0.5 0.5
i 0.5 1.0 0.5 1.0

é 0.02721  0.05404  0.01515  0.03023

correlates well with the corresponding drop in the energy release rate {see Figs 7a and 11
in Stringfellow and Freund (1993)}, implying that AG, is quite small. One reason for a small
AG, contribution is that the innermost contour (small r} was used for calculating the J-
integral and that AG, decays fairly rapidly as r decreases. It is plausible that another reason
is that the constant C in (48), which for the present case equals half of the compressive
normal stress value between the crack faces, is small.

The second type of problem studied by Stringfellow and Freund (1993) is concerned
with the extension of the above analysis to the case of cracks along the interfaces of
dissimilar materials. Theoretically, the crack tip singularity is weaker, although slightly,
than that of the classic mode II problem and the energy release rate is exactly zero at the
crack tip. However, numerically the crack tip cannot be actually reached. and an integration
contour somewhat away from the crack tip is usually used. While this contour may be able
to give a converged value for a theoretically nonzero energy release rate, say, for the case
of a crack in a homogeneous solid, it may not be able to give a converged zero value for
the present case, as in the referred study here. A reason for this disparity in performance is
that contributions to the integral from secondary factors decay at different rates for different
cases. Accordingly, if the energy release rate is evaluated numerically using the J-integral.
a nonzero value will usually be produced. In general, the computed value of this integral
will be somewhat random, depending on how far the contour is from the crack tip. When
the contour is circular and is sufficiently close to the crack tip, the dependence of the integral
will be given by the expression for G,, as shown in (45). To this end, it is important to note
that G, has a weak dependence on r, meaning that AG,, the contribution to G, from friction
along the crack flank, a secondary factor, decays slowly as r decreases. This is in strong
contrast with problems discussed a little earlier for cracks in homogeneous solids, where
AG, varies with r*°. In comparison, AG, varies with 7* here, with & of the order of 0.05.
For example, for the case of a bimaterial system with homogeneous Poisson’s ratio of 0.3,
the variation of & with y, and E//E, (where E; for the film and E, for the substrate are the
Young's moduli) is as in Table 1. On the other hand, although the calculated G, value is
nonzero, it is expected that when a contour quite close to the crack tip is used. the G, value
will still be significantly below its level for the case of no friction between the crack faces.

In conclusion, for interface cracks with frictional crack surface contact. the energy
release rate is not a well defined fracture parameter, because theoretically it is zero and its
value from J-integral calculation is path-dependent. In this case, the stress intensity factor
K appears to be a better measure of crack tip fracture driving force for crack growth and
its initiation. Nonetheless, as a qualitative indicator, the energy release rate calculated along
a finite contour near the crack tip is still a useful tool for iltustrating the effect of friction
on interface toughness, as demonstrated by Stringfellow and Freund (1993) in their newly
published report.

7. SUMMARY

An asymptotic analysis of a stationary or steadily growing interface crack with fric-
tional contact in an elastic anisotropic bimaterial has been presented, which requires that
the solid is so oriented that the plane perpendicular to the crack surface is a material
symmetry plane. A full representation of plane strain and plane stress crack tip fields is
provided in terms of several arbitrary entire functions, which can be used to generate
complete Williams-type series expansions for the crack tip fields. As special cases, the above
general solutions also apply to problems with cracks along the interfaces of isotropic
bimaterials or cracks in homogeneous solids. The main points of this research can be
summarized as follows.
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First, the singular part of the frictional interface crack tip fields is governed by only
one stress intensity factor and is of the type r~!"**°, where the singularity index & can in
general be positive or negative depending on deformation history of the crack flank near
the crack tip. However, when the loading is increased monotonically from zero or when
the crack is growing steadily near the crack tip, d must always be positive, implying that
the crack tip singularity is weaker than the conventional inverse-square-root singularity.
When crack contact is frictionless or when the bimaterial becomes homogeneous, o will be
Z€r0.

Second, for solids with at least orthotropic symmetries, the singular crack tip fields are
similar to those of the classic mode II problem. When these types of anisotropic bimaterials
become homogeneous, the singular crack tip fields will be identical to those of the classic
mode II problem, regardless of the amount of sliding friction between the contacting crack
faces. Further, the complete crack tip fields represented by the arbitrary entire functions
now fully describe the near-tip behaviour of the homogeneous materials under combined
compression and shear loading conditions. These complete crack tip fields cannot be
obtained directly from those for the classic mixed-mode problem.

Third, if crack branching or kinking away from the interface is to occur in a bimaterial
with homogeneous Poisson’s ratio, it is more likely that the crack will go into the material
with lower shear modulus than into the one with higher shear modulus. From the angular
location of the maximum circumferential stress o,,. the angle at which the crack breaks
away from the interface is estimated to be near 70", where the shear stress o, is approxi-
mately zero.

Finally, for cases where the singularity of the crack tip fields is weaker than r~' . such
as during steady-state interfacial crack growth with sliding crack surface friction, the stress
intensity factor is a better choice as a measure of the crack tip fracture driving force than
the energy release rate. This is because theoretically the energy release rate is zero at the
crack tip and estimates of the energy release rate computed from finite element data using
contour integrals, such as the J-integral, are arbitrary and not reliable quantitatively. in the
sense that the estimated values will depend on the location of the particular integration
contour used. However, it is felt that a fracture criterion based on the energy release rate
has one strong advantage over a stress intensity factor based one, namely that a properly
posed energy criterion can provide a unified dimensional measure for the crack tip state
and for the fracture toughness of the material, as opposed to the K based criterion that
changes its definition and dimension from one class of problems to the other. depending
on the singularity of the crack tip fields. As such, it is hoped that the findings of this study
can act as a basis for a modified. energy release rate based fracture criterion for interface
cracks.
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